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A new atrtificial viscosity Q) model, based on physical conservation corrections
for momentum, and a new atrtificial heat transfir) formulation are developed for
the analysis of one-dimensional compressible fluid transients in plane, cylindrical,
and spherical geometries. The accuracy of these formulations is verified against
various benchmark shock tube problem®QAnduced geometric error for cylindrical
and spherical geometry is defined and the benefits dptf@@mulation presented are
demonstrated. It is also shown that these formulations can control the total variation
of the solution and have superior shock-capturing capabilities. Comparisons are
made with the originalQ formulations of J. von Neumann and R. D. Richtmyer
(1950,J. Appl. Phys21, 232), W. F. Noh’sQ& H shock-following method (1987,
J. Comput. Phys72, 78), and the piecewise-parabolic method of P. Colella and
P. R. Woodward (1984, Comput. Phys$4, 174). The comparisons demonstrate the
advantages of the new method. Numerical examples for more realistic equations of
state which show the robustness of the method are also presemgegho Academic Press

Key Wordsnumerical filters; artificial viscosity; artificial heat transfer; momentum
correction; energy correction; Lagrangian hydrodynamics; shocks.

1. INTRODUCTION

The development of numerical methods for solving systems of nonlinear hyperbolic ¢
servation equations that have sharp discontinuities in the solutions is a major objectiv
fluid dynamics. Indeed, during the last several decades, numerous methods have been
oped. Perhaps the most popular method is that of von Neumann and Richtmyer [1], wi
uses finite difference techniques combined with so-called artificial viscosity. This metho
simple to use and is economical to apply. Unfortunately, the results using this method sr
shocks, and serious errors can be induced by using artificial viscosity for the calcula
of strong shocks. More recently Engquist filters [2] were used to improve computatiol
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efficiency. This method can be easily implemented into existing codes because the filter
is essentially independent of the basic differencing scheme. Nevertheless, an increase |
time is required due to an additional filter step which contains field-by-field decompositic
In addition to the above mentioned methods, a variety of shock-capturing schemes |
been developed to improve resolution of the shock and the accuracy of the numerical sct
[3—11]. Many of these methods can be characterized as higher order Godunov methoc
total variation diminishing (TVD) methods. The oscillations behind a shock are eliminat
by enforcing monotonicity by limiting the range of the solution (Godunov methods) or t
limiting the magnitude of the fluxes in the numerical solution (TVD methods).

In selecting one of the methods for application to a specific class of problems, varic
things must be considered, including equations of state, geometry (e.g., cartesian, ¢
drical, or spherical), boundary conditions (i.e., fixed or moving), desired computing tir
and acceptable accuracy, suitability of moving mesh methods, ease of implementation,
so on. When the physics is complicated, the artificial viscosity method is one of the m
attractive candidates for dealing with shocks. As a consequence, in recent years, impr
artificial viscosity formulations have appeared in the literature. Most of these methods
tempt to overcome the disadvantages related to the errors induced by artificial visco
(e.q., artificial heating during the reflection of strong shocks, shockless heating, and
errors which occur when shocks are propagated over a nonuniform mesh and in sphe
geometry). Donat and Marquina [12] addressed the overheating problem near the wall
Godunov type schemes, and proposed an alternative flux formula to reduce patholog
behavior in the numerical solutions. In the interaction of shock waves, the type of error t
occurs in wall heating was found by Menikoff [13].

Noh [14] demonstrated that artificial heat transkrjn addition to artificial viscosityQ,
is an effective way to eliminate excess heating error during reflection of a shock. In spher
geometry, Schulz and Whalen'’s artificial viscosity tensor formulations of the hydrodynar
equations with Noh'$d formulation were proven to be fairly accurate [14]. Other forms o
artificial viscosity are based on the TVD limiter idea [15], in which the magnitude of tt
artificial viscosity is controlled. In particular, artificial viscosity is turned off when ther:
is adiabatic compression without shocks and is turned on to reduce oscillations bel
the shock front. Morris and Monaghan [16] used the idea of artificial viscosity with
time-varying coefficient in their smoothed particle hydrodynamics (SPH) method to redt
smearing of shocks and vorticity decay. In their work, artificial viscosity evolves accordi
to a simple source and decay equation. The amount of artificial viscosity increases w
a fluid particle enters a shock and the decay term causes it to decay to a small v
beyond the shock. These formulations of artificial viscosity can give greater accuracy t
von Neumann’s original formulation; however, the improvement in accuracy is restrict
to specific classes of problems and thus these methods are not fully satisfactory.

The objective of this paper is to present and test a new artificial visc@3)tsr{d artificial
heat transferkl) formulation which contains properties of a nonlinear filter. These formulz
tions of Q andH were developed by considering the physical meaning of artificial viscosi
and artificial heat transfer in the finite difference equations over a staggered one-dimensi
mesh. Itis interesting to note that for slab symmetry, @formulation reduces to the arti-
ficial viscosity formulation of von Neumann, but it is different for cylindrical and spherice
geometries. In the region of oscillations, they can be diminished by intensifyinQ tre
H in a specified manner. Section 2 of this paper presents the basic conservation equa
in Lagrangian form, followed by the corresponding finite difference equations construc
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on a staggered grid. In Section 3, we present the procedure used for the developme
the H and Q corrections. Section 4 contains numerical results for Noh’s constant veloc
shock problem. The numerical results are compared with exact solutions, including Nc
Q& H shock-following method and the piecewise-parabolic method (PPM) of Colella a
Woodward [17]. Shock problems for real equations of state are also considered, to der
strate the robustness of the method. The final section contains the salient conclusions c
work.

2. LAGRANGIAN HYDRODYNAMICS WITH ARTIFICIAL VISCOSITY, Q, AND
ARTIFICIAL HEAT TRANSFER, H

The conservation equations in Lagrangian form are:

Mass conservation

1 1 \areth
U_p_<a—|—l> om @)

Momentum conservation

W _ L IP+Q

= , 2
ot am @
Energy conservation
de oH
— — 4+ —. 3
at (P+ Q) + am 3
Finally, the spatial coordinate(m, t), satisfies the ordinary differential equation
dr
— =u(m,t). 4

dt

Here the correction® andH are to be specified, andis the specific volumep is the
density(v™1), u is the velocitye is the specific internal energp,is the pressurd,is time,
and is either 0, 1, or 2, depending on whether there is planar, cylindrical, or spheri
symmetry, respectively. The equation of state in general foqr=(e, v). For the special
case of an ideal gas, the equation of statpis(y — 1) pe, wherey, the ratio of specific
heats, is assumed to be greater than unity. The independent Lagrangian variatilesdre
t. The spatial coordinate, is related to the mass coordinate, by

r R
m(r):/ pr“drz/ °R*dR, (5)

ro Ro

whereR is taken as the initial position of the Eulerian coordinate (i.€R, 0) = R), and
%= p(r, 0) is the initial density. See also Fig. 1.

For the difference equations, we essentially follow the staggered mesh difference for
lation given by von Neumann and Richtmyer [1]; however, in our formulation an explic
treatment of th&) andH corrections is added in the energy equation. The scalar quantiti
Q andH developed in this paper are physical corrections of momentum and energy so
there is no special reason for treating them implicitly.
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FIG.1. Staggered grid for spatial discretization in Lagrangian coordinates.
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3. QAND H FORMULATIONS

The basicQ and H formulations were developed as physical conservation correctiol
for momentum and energy, respectively. Thus the properties of a nonlinear filter are ea
added in the formulations @& andH by simply intensifying the corrections of momentum
and internal energies at a few mesh points where Gibbs oscillations occur.

3.1. TheBasicQ Formulation

Mathematically, the differential form of the equations is obtained from integral equatio
representing conservation laws, with the assumption that the physical solution is smo
In a region of rapid change, the smoothness assumption is difficult to realize with a fir
difference approximation. A finite difference treatment of pressure shocks withgives
an unrealistically overestimated node velocity. Artificial viscosity in the problems involvir
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FIG. 2. Schematic diagram of the momentum correction procedure.

a strong shock must be used in such a way as to correct the nonphysical velocity ind
by treating the discontinuity with a finite difference approximation. In particular, addir
a certain amount of artificial viscosity in the momentum equation as a way to achie
solutions as accurate as high resolution (1i@rschemes implies that the artificial viscosity
formulation can be interpreted as an approximate Riemann solver [15]. An artificial visco:
formulation can also be interpreted as a nonlinear filter. Indeed, the success of the me
depends on finding an accurate formulation of artificial viscosity which contains the
properties. The momentum equation with@utan be expressed as

At o
P =) = ) (e — ). (12)

We have developed an artificial viscosity formulation which has physical meaning basec
Eqg. (12). In particular, the compression of the node after one time step can be regarde
overlapping the two nearest mass-weighted average velocities; see Fig. 2. In other we
mixing of momentums occurs in the volume node undergoing compression.

In this paper, the amount of momentum transfer due to the mixing of momentums
given as a momentum correction because the term involves a filtering procedure whic
independent of the difference scheme. The amount of this momentum correction is rel;
also to the artificial viscosity formulation. The momentum transfer rate by the moment
mixing in nodej + 1/2 is given by

. ,
T2 = CoAM] 1o (U] — uf,q), (13)

whereC2 is a dimensionless constant ang ., , . is the mass mixing rate due to the
volume compression in node+ 1/2,

AmT+1/2,c = P?+1/2Vrj1+1/z,c if VT+1/2,0 >0, (14)
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and\'/'j‘ﬂ/z,C is the volume compression or expansion rate,

vT+l/2,c = (r1n+1/2)0((urj1 —ul,y). (15)

In the case of an expansio‘{ii,’j‘ﬂ/zC < 0, there is no mixing; thuam{_, , . =0. As seen

in Fig. 2, wherC2 = 2, the artificial momentum transfer is carried by the whole mass in tt
mixing region. After a correction due to the momentum mixing is added in Eq. (13), the fir
amounts of momentum contained in the left-hand-side half volume and the right-hand-
half volume, atj + 1/2 andt"+?, are

M) = 0.5Am 1 u™t — AtMT (16)
and
M ar = 0.5AM Uit + AtMT ) . 17)

respectively. Hercm]—‘”+1 is the result obtained without a momentum correction. As can b
noted in Egs. (16) and (17), the total amount of momentum during the integration ste,
conserved in the process of the momentum correction. After the same approach is ap
to the other side, the final corrected mass-weighted average velocity is

n+1 n+1 an an
gt = i1z + Mt e At(M]_y ), — Mj+1/2)_ (18)

J Amj - Am;

With artificial viscosity added, Eq. (12) can be rewritten as

At «
U = A (TN Q%12 — Q0_1/2). (19)

Conceptually, Eq. (19) is equivalent to Eq. (18). Thus the artificial viscosity formulatic
derived from the process of the momentum conservation correction is given by

MI_ 12 — MY,
QT—1/2 - Q?+1/2 = =2 (20)

Gk

Summing Eq. (20) from nodgeto boundary nod¢ = N, and assuming that the amounts of
momentum correctioV N-+1/2) and artificial viscosity QR .1 ) in the boundary nodes are
zero, we find that the gener@ formulation for plane, cylindrical, and spherical geometries
is

N M —_ MN
QT—l/Z _ lz: ( I_l/zrln)“ |+1/2>. 21)
=]

One of the main reasons for using artificial viscosity in a numerical method is that ©
can properly handle shocks by distributing the momentum near a discontinuity. Howe!
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the overall amount of momentum must not be changed by using artificial viscosity.
other words, the artificial viscosity cannot be a momentum source. This is the reason \
the summation in Eq. (21) must be used in @é&ormulation for cylindrical and spherical
geometries. In contrast, for plane geometry, the momentum correction terms of other voli
nodes on the right-hand side of Eq. (21) cancel out after summation begfuse: 1 at
every velocity node. Thus the artificial viscosity is simply related to the amount of tl
momentum correction in each volume node,

; 2
QN 1o =M 4, =C5o 4p(u] 4 —uf)” (22)

We note that Eq. (21) is identical to th® formulation given by von Neuman and
Richtmyer [1] for plane geometry, but not for cylindrical and spherical geometries.

3.2. TheFilteredQ and H Formulations

As one can see in Eq. (21), th@ formulation is accomplished by determining the
momentum correction\] 111/2) in each volume node. In the compression nocﬂé%&H/Z
is given by Eq. (13). Wheneva! 741270, we have

n+1

s — ) < oyt -

- ut (23)

Thus Q contains a total variation diminishing property that adju\éf$+l/2. When an
overshoot of pressure is introduced into the node, Eq. (13) is replaced by

AMji1/2

At (UT - u?+l)’ (24)

M?+1/2 =G

whereC; is a dimensionless constant that intensifies the momentum correction. The |
velocitiesurj1+l and uTﬂ cannot be overcompensated so that a new extremum is creat
The maximum value allowed fa2; is 0.25, which makesA['1,, = M1, after the
momentum correction using Egs. (16) and (17).

For the development of the artificial heat transfer formulatibl), (we have used the
same approach as that used for @dormulation. TheH formulation is only used in a
region of compressionp(r, t)/p° > 1), whereH is the amount of the energy transfer due
to the mixing of internal energy at velocity nodeinduced by compressions in adjacent

volume nodes. Thus, the filterédl is analogous to the filtere@:

AMj_1o + AMj 1
HJ' = Cl( i (512 = &fs1/2)- (25)

A method for detecting undesirable maximums and their corrections for systems
equations was described by Engquist [2]. Using Egs. (24) and (25), we present a filte
procedure for our system of equations in a pseudo-language algorithm, which correspon
the implementation of the nonlinear filtering, artificial viscosity, and heat transfer correctic
discussed above.
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3.3. The Filtering Algorithm

Assume thah time steps have been computed. To calculate the needed filtering, artific
viscosity, and heat transfer corrections for the calculation of advanced time level rest
we perform the following calculations, where, andA_ are the forward and backward
differences, respectivel L uj = £(Uj+1 — Uj):

Doj=0,N-1
jtiter,@ = 0, jfiter,n = 0.
If, j =0, then, A_Uj=—ALUj, A_pjy12 = 0, A_gjq12 = 0
If, J = N - 1, then, A+Uj+1 = 0, A+,Oj+]_/2 = 0, A+8]’+1/2 = 0
If, [(Ayuj)(A_uj) < 0,and, (A uj_1)(A_uj,1) < 0], or,
[(A4pj+1/2)(A_pji1/2) < O, and, not admissiblej, p", p"1)], then,
jfiter,o =1
Endif
If, (A_gj11/2)(A_pj11/2) <O, 0r,
[(Asejt12 + A_gjr12)A_gj112 < 0,and, not admissible j, &", "1), then,

Jiiter.n =1
Endif
Enddo
Doj=0,N-1
If.y jﬁlter,onytheny
Mj1/2 = CEAMj1/2.c(Uj — Uj4) [if @ Lagragian formulation]
. 2 . ) .
hMszcaﬁ%ﬁ)Amﬁymwj—uHQUHmEMHwﬁmmMMmm
Else
Mj 12 = C =22 m'“/z (Uj —Uji1)
Endif
Enddo
Ont12 =0, Mny12 =0.
Doj=N,1, -1
Qj_12=Qjr12+ Mj_12 — Mjy12)/(r))*
Enddo
Ho =0, Hy =0.
Doj=1,N-1
H; =0

If, ,0?_1/2/,0?71/2 > 1,and, (p?+1/2/p?+1/2) > 1,then,
If, jfilter,H =1,or, [J - lfilter,H =1,and, J + Liter,n = 1]! then,
Hj = Cu (5P ) (e 1/2 — £4172)
Else
If, j + Liiter.n =1, then,
Hj = C1(“3522) ()12 — £4172)
Elseif, j — lfiter.n =1, then,
Hj = C1(“25) (ej-12 = €j4172)
Endif
Endif
Endif
Enddo
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Function admissiblg(j, p", p" %)
If, min(o}'10. 0512 P532) < 4172 < MaX(0] 12 0]51)2: P]73/2), then,
true
Else
false
Endif
Return

4. NUMERICAL TESTS

In order to assess the performance of the artificial viscosity and artificial energy tran:
formulations discussed above, we chose problems involving shock waves, contact
continuities, and the reflection of strong shocks at a wall, or at the geometric cente
spherical geometries, to allow verification against known analytical solutions of the eq
tions being modeled. The Eulerig@ formulations are the same as the Lagrangi@an
formulations, Eq. (21), except for the dimensionless constant. We note that the dimens
less constants for Lagrangian and Eulerian formulati@3sandC3 ¢, are related by the
Jacobian J = 2, C3 . = C2(3R)2 Therefore the amount of momentum correction for ar
Eulerian formulation of artificial viscosity is

2
= B ) A ). 6
j+1/2
The meaningful range of the dimensionless constants foRthaed H formulations found
in Section 3are ® < C3 <2.0and 00 < C; < 0.25. TheC; value used for all our numerical
tests was 0.25. We found that the dependency of the numerical solutions on the magni
of C; was negligible. The magnitude of this constant affects the speed of correction
the nonphysically determined variables but does not affect the final solutions significar
As can be seen in Fig. 3, the numerical results are also not strongly dependent or
magnitude ofC3. The stability limit must satisfy a Courant condition [18], as for otfer
explicit methods. In order to effectively eliminate the oscillations using a fjteorrection,
we need one more condition for every node:

mj_1,2

A
C2(|AUj_1/2| + |Cs j_1/2Dpj-12 < C1 N (27)

Numerical calculations were carried out in this study using the following time step
assure these conditions:

(28)

0.5CAr;_
At:min( 1712 )

[AU;j_1/2| + |Cs j—1/2]
For simplicity, we have used some specific notation to identify each method. In particu
B'Q& HL or E (Cg)

denotes our Lagrangia®& H or our EulerianQ&H formulation, respectively, each of
which contains filtering properties. Similarly,

N-Q&HL or £(C§, C1, h3, hy)
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FIG. 3. The dependence of solutions on the param&gr,

denotes Noh'’s Lagrangia@& H or Noh'’s EulerianQ& H formulation [14], respectively.
Similarly, Q,(C3) and B-Q(C2) denote the originaQ method of von Neumann and
Richtmyer and our Lagrangia@ formulation which does not contain filtering properties,
respectively, wher€3, Cy, h3, andh; are the dimensionless coefficients used to obtain th
numerical results with each method.

4.1. Noh’'s Shock Wave Problems

In our first series of tests we study Noh’s three shock wave problems [14], which dif

only in their spatial symmetries. These are well known, very severe tes@ foethods
with which to check foiQ-induced errors. The initial conditions asér, 0) = 1, p(r, 0) =0,
e(r, 0)=0, andu(r, 0) = —1, except at the origin, where it must be zero. The equation
state used was that for an ideal gas witk 5/3. For this case, shock waves generated at th
origin propagate with a constant velocity of3l and the internal energy behind the shock
is 0.5 and the densities are 4, 16, and 64 for plane, cylindrical, and spherical geomet
respectively.

4.1.1. Uniform mesh in plane geometryrhe results for plane symmetry used to study
the sensitivity of our numerical method to the constan€gfare shown in Fig. 3, where
density is plotted versus the distance. The results are all shown for 40(sdfs-0.1)
att =2.6. The effectiveness of the filt&p developed in this paper as a tool with which
to suppress numerical oscillation is apparent. We see that the wall heating error [14
effectively eliminated using the filtered artifical heat transfer formulation. The numeric
results with zero wall heating error are obtained udBi@& Hy (1.5). The wall heating
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error was about 1.7% fa€3 = 1. The use of artificial heat transfer to eliminate the wall
heating error is well known [14]. The main disadvantage of previous artificial heat trans
formulations was considerable smearing of the shock front when a given amount of artifi
viscosity was used. The smearing of the shock with the current artificial heat trans
formulation is small, about a half mesh interval, and the shock discontinuity is well resolv
within four mesh intervals.

4.1.2. Nonuniform mesh in plane geometrfts noted by Noh [14], classical formula-
tions of Q produce additional error when shocks are propagated over a nonuniform mes

To test the current formulations on a nonuniform mesh, we used the same nonuniform n
as that used by Noh for studying this type of error,

ARj41 = xAR;, (29)
wherey is 1.05. If x is replaced byy ~* in Eq. (29), the mesh decreases for the first hal
region and then increases for the second half. This type of error was discussed theoreti
by Noh [14]. In fact, he verified that this type of error is unavoidable using a Lagrangi
formulation of artificial viscosity because this error is already inherent in the solution

the differential equations. However, this error is related to the transient nature of the sh
thickness; thus an Eulerian formulation of artificial viscosity is preferred because cons
shock thickness (i.e., fixed length) can be specified.
The conditionA Ryax > Armaxmust be satisfied in Eq. (26). For the purpose of simulatior
we may takeA Rmax= Ar 2., which suffices for this problem. Figure 4 compares the resu

T T T
4 Gttt 4
4ot Wh*‘« 9\]
N ‘.
x e B-Q&HE0.25)
Y
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FIG. 4. The present Eulerian formulatidB-Q& He (0.25) is compared with Noh’s Euleriadd- Q& Hg (1.0,
0.3, 0.0, 1.0) formulation.
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of the B-Q& Hg(0.25) with the Noh'sQ& Hg (1.0, 0.3, 0.0, 1.0). Since a very larg&e
constant in Noh'Q& H formulations is necessary to eliminate the nonuniform error, th
results obtained with these constants show spreading of the shock over a large numb
the smaller zones. In a comparison of Figs. 3 and 4, a nonuniform mesh error does
appear in thé-Q& Hg (0.25) results. Note that the shock thickness is equivalent to the or
obtained with a uniform mesh and the Lagrangian formulation of artificial viscosity wif
C2=1.5. The shock is resolved in four mesh intervals in both cases by the use of am
smaller constanC3, for B-Q& He. It is clear that the current formulations of filt€& H
permit the use of smalleZ? for resolving the shock for both a uniform and a nonuniform
mesh in plane symmetry.

4.1.3. Spherical geometry.The case of spherical geometry is well known to be a sevel
test, and a number of numerical methods fail to give correct solutions. Indeed, serious €
appears in the solutions with the origif@lmethod (i.e., up to 1000% error near the origin
because of “wall heating”). This type of error was discussed by Noh [14]; he showed thz
depends on th€ formulation. Thus this test problem is a crucial benchmark for our ne
Q formulation.

In Section 3, the unifie® formulation for plane, cylindrical, and spherical geometries
was developed in such a way as to conserve the overall momentum and yield a new
mulation for cylindrical and spherical geometries. Figure 5a shows the density profile:
t =0.6 s for 100 cells, where the new formulatiBAQ(2.0) is compared with the origi-
nal Qq(2.0), Noh’s standardN-Q& H, (2.0, 0.0, 0.0, 0.0), and the exact solutiom, = 64,
behind the shock. It can be seen that the error forBR®(2.0) is 7% near the shock,
while the errors foiN-Q& H__ (2.0, 0.0, 0.0, 0.0) and Q,(2.0) are 19% and 40% near the
shock, respectively. As shown in the earlier test of plane symmetry, a wall heating errc
inevitable in difference solutions, since it already occurs in the exact solution of the diff
ential equation withQ [14]. The same conclusion holds for any shock-smearing methc
[17]. However, the wall heating error can be eliminated using artificial heat tratéfer,
The same conclusion holds for spherical geometry; however, the wall heating error sh
in Fig. 5a is dependent on th@ formulation also. Figure 5b shows the velocity profiles
of these results. It can be seen that there is an increased amount of momentum at the
(maximum near the shock) with-Q& H, (2.0, 0.0, 0.0, 0.0) and von Neumani,(2.0).

As noted in Section 3, in a numerical method artificial viscosity is used to properly han
the shock by distributing the momentum near the discontinuity where the total amoun
momentum must be conserved. The necessary condition for doing this@itbaection is

N

Z rf(Qf 12— Q% 42) =00, (30)

j=—N
wherej =—N, j =0, andj = N are the left-hand-side boundary node, the geometric or
gin, and the right-hand-side boundary node, respectiveIyzl\ihhp_l/2 = M?+1/2 because
of spherical symmetry. At the boundary nod@g,y.,,, andMZ_, , are zero. This con-
dition is satisfied for the new definition  in Eq. (21), which is expressed in terms of the
momentum correction. For plane symmetry, this condition is automatically satisifed. Ho
ever, noQ formulation not using a summation can satisfy the condition given by Eq. (3
for cylindrical and spherical geometries. Thus the total amount of momentum creation |
with Q, which is called the geometric error, is greater than zero. This is shown in Fig. &
where the geometric error for o8 Q(2.0) is compared with the errors for Noh'’s standard
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FIG. 5. The solutions for Noh's spherical shock problem with 100 celR= 0.01 m) and with 400 cells
(AR=0.025 m), profiles for density and velocity in (a, c) and (b), respectively. The transient geometric erro
shown in (d). Here we compare the presBaf)(2.0) with Noh’sN-Q&H, (2.0, 0.0, 0.0, 0.0) and the original
Q,(2.0) of von Neumann. The geometric error is defined by the amount of momentum cre&@edtyulation,

which is given by Errag(t") = ZT‘;N“J‘")&(Q?—UZ - Q%)
N-Q&H, (2.0,0.0, 0.0, 0.0) and the originalQ,(2.0). Using B-Q(2.0), zero geometric
error is shown. In contrast, the geometric errors for & H, (2.0, 0.0, 0.0, 0.0) and
Qo(2.0) grow with time. Thus the pre-shock density and velocity profiles are spread o
greater and greater distances (see Figs. 5a and 5b) with increased geometric error.
We confirmthis in Figs. 5¢ and 5d, where we show thatimproved resuls-fQ& H, (2.0,
0.0,0.0,0.0) and Q,(2.0) can be obtained by reducing the geometric error using a fir
mesh interval l =400 AR=0.0025). Figure 5c shows the convergence of solutions fc
the N-Q&H, (2.0, 0.0, 0.0, 0.0) and Q(2.0), and Fig. 5d shows that the geometric er-
rors are reduced using a fine mesh interval. Udihg: 400, the numerical results with
N-Q&H, (2.0, 0.0, 0.0, 0.0) and Q. (2.0) are nearly equivalent due to the small difference
in geometric error, as shown in Fig. 5d. It is clear that this error can also be reducec
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FIG.6. Comparison of the results obtained with the pre®:@& Hg (0.1), Noh'sN-Q& H, (0.667, 0.4, 4.0,
1.0), and the (nor®@) PPM, with 100 cells for the final time= 0.6 s.

using a smalleQ. However, the amount of error is still troublesome and this error cann
be eliminated using this kind d® formulation. It is one of the main reasons why a nu-
merical method withQ usually fails to obtain the correct result in cylindrical and spherica
geometries. Using the formulation presented herein, the dependence of the geometric
on mesh size an@ is zero. We stress the importance of conservation of total momentu
using the new formulation o for both cylindrical and spherical geometries.

As noted previously, the wall heating error near the origin can be eliminated using artific
heat transferH. This is shown in Fig. 6, where the result wBiQ& Hg (0.1) is compared
with Noh’'s N-Q& H_ (0.667, 0.4, 4.0, 1.0) and the (honQ) PPM technique of Colella and
Woodward [17]. Superior results are obtained by the method proposed herein, and
wall heating error and the oscillation are eliminated. The same quality of solution can
obtained withB-Q& H (0.25). These are all shown with 100 cellstat 0.6 s. In Fig. 7,
B-Q& Hg(0.1) with uniform 200 cells produces essentially the converged exact solutior

4.2. Sod’s Shock Tube

Another good test problem is due to Sod [19], and consists of two different material ste
separated by a diaphragm. That is:

(pL, oL, UL) = (1.0,1.0,0.0), ifr <0
and

(Prs PR, UR) = (0.1,0.125,0.0), ifr > 0.
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FIG. 7. The solutions for Noh's spherical shock problem with 200 cellR(= 0.0025 m) andB-Q& He (0.1)
at the final time = 0.6 s. Profiles for density, velocity, pressure, and internal energy are shown in (a), (b), (c), ¢
(d), respectively.

The diaphragm is caused to rupture at time0. After the diaphragm bursts, a shock
wave moves toward the right and a rarefaction wave moves toward the left. Figure 8 sh
theresults at= 0.2 s with 200 cells anB-Q& H_ (1.5) for a specific heatratip = 1.4. The
magnitudes of the various plateaus are reproduced very well without numerical oscillatic
Moreover, the numerical results show that the cur@&tH formulation gives the correct
positions of shock waves and contact discontinuities. In fact, the sharp contact discontinu
are resolved within one mesh interval and the shocks within three mesh intervals, wt
compare very well with numerical results obtained using high resolution schemes [6]
modern upwind methods [11].
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FIG. 8. The solutions for Sod’s shock tube problem with 200 ceM\x & 0.005 m) andB-Q& H, (1.5) at
t=02s.

4.3. A Shock Reflection Problem Using Real Equations of State

In this test, we considered the shock reflection problem again using a so-called gen
equation of state in plane symmetry. This general equation of state [20] can be writtel
the form

p=[1/(E + ¢o)]{¢ (a1 + a2|¢]) + E[bo + ¢(by + b2¢) + E(co + €1)]}, (31)
whereE = p%, ¢ = p/p°—1, andthe constantg?, a;, a, by, by, by, Co, C1, ¢o are given by

0% =890 a; = 4.9578 a, = 3.6884 by = 7.4727, by = 11519,
b, = 5.5251, ¢y = 0.39493 ¢; = 0.52883 andp, = 3.600Q
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The initial data for the density and velocity are 8.9 and, respectively. The inter-
nal energy at the initial time is chosen to have an infinite pressure ratio. This probl
was solved up to the time when the shock moved a distance of 0.3 m with 100 ¢
(AR=0.01 m) andB-Q&H, (1.5). An exact and a numerical solution of this problem
were obtained by Glaister, using an approximate linearized Riemann solver [20]. The
merical solution using our method is compared with the exact solution in Fig. 9. A go
representation of the exact solution witha@tinduced error and with the correct shock
speed are shown.

4.4. A Shock Wave Problem for an Imploding Air Bubble

The problem we consider in this test case is concerned with the dynamics of an air bul
with initial radiusag = 10 «m surrounded by a spherical flask containing water, whose out
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FIG. 9. The solutions for a shock reflection problem with a general equation of state; the pressure r
p*t/p~ =oc and 100 cellsAx =0.01 m) for plane symmetry.
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radius isRr =5 cm. The air and water are initially at atmospheric presspge; 1 bar;
they are in thermal equilibrium, and at rest. These parameters are typical of those foun
sonoluminescence experiments.

The outer radius of the water flask is driven by an oscillatory presguBi, t) = po —
Apsin(2r ft). Here we used\p = 0.25 bar andf =45 kHz. The expansion of the bubble
radius from its initial radius occurs on a hydrodynamic time scale during the acous
delayed rarefaction half-cycle of the wall pressure change. This expansion brings the bu
to its maximum radius. The ensuing implosion (i.e., rapid compression) of the bubble n
accelerate the air/water interface to supersonic velocities and strongly compress the g
the bubble’s interior. Moreover, it generates a strong spherically convergent shock we
This inwardly propagating shock wave in the gas collapses to the center and rebounds

The equation of state for air can be given by an analytic model [21] that includes vib
tional excitation, dissociation, ionization, and repulsive intermolecular potentials,

p=RTp(l+mp)(l+m)+ 1_E°(gjn) Kpﬂ)wml— (;)2], (32)

&= ER’T + %} (1-—mp)+mpRTp + gR’T(ZmD)(lJr m)
+2mDR’zi:miTi + %)C_l [(%)n/s— g(%ﬂ
“asil(5) 35

wheremy = 0.5[tanh[AT — 0.9Tk)] + tanh[Q63]], m= Zf’zl mi, R = R/288 is the gas
constant for air, andmp (0<mp <1; Tp=9.7eV),m (0<m; <1; T;—5=145, 296,
474,775, and 97.5 eV)n (=9), p° (=1.113 g/co, E. (=2.52 x 10° ergs/g), and® (=
3340 K), are the dissociation of molecular nitrogen, the ionization, intermolecular pote
tials, the maximum density of the air, the binding energy of fully compressed air, and 1
vibrational contributions in the energy equation, respectively.

A polynomial equation of state for water [22] is given by

G+ GoE + G3E2 + G4E3
Gs + GgE + G7E?2

3

p=(l+§)< ) and G =) Aj® (34)
j=0

wherep andE are expressed in terapascals; p/p° — 1, E = ¢p°, and,p® = 0.998 Mg/n?
(density at 298.5 K and standard pressure). The coeffichnter these analytic expressions
are presented in Table I. The range of applicability of Eq. (34)029<T <10 eV and
0.998< p <40 Mg/n?, and p > 10-2 MPa. In the numerical solution of present problem,
the spatial scale to be resolved in the water will become progressively smaller as bul
collapse proceeds because the position of the interface decreases with time. If a fixed
is adopted, an excessively large number of grid points are required. To avoid the probl
we introduced a moving grid during the bubble collapse period according to

- (EXL)) (35)
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TABLE |
Numerical Values of ConstantsA;

i Aio A Aiz Ais

1 0 2.190E-3 1.544E-1 2.160E-1
2 —1.340E-2 2.809E-1 1.990Er2 —1.114E+1
3 1.493E+3 3.016E-4 7.418E+3 3.184E-3
4 9.166E-4 7.468E+-5 7.742E-4 4.722E-3
5 1.000E-0 6.723E-1 —6.347E+1 3.331E-1
6 1.625E+3 3.274E+-4 —2.189E+3 —1.842E+3
7 1.931E-5 1.545E+-6 8.734E-4 6.006E-3

Density (g/cc)

0.01

0.001
0 05 i 15

Radius (um)

Pressure (Mbar)
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1e05

0 05 1 15
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FIG. 10. The solutions for an imploding bubble with general equations of state for air and water; 600 ce
inside the bubble and 2000 nonuniform mesh points in the water, with a moving grid.
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For the bubble growth period, in terms of the original state variahlthe sizes of the
water zones are fixed. The bubble growth period had four equally sized air zones and Z
water zones that increased geometrically in size froBnun atayp, to 154um at Rg. Four
air zones are enough for an accurate numerical evaluation because the interface veloc
much less than the sound speed in the gas during this period. At the end of the growth pe
(a(t) = amax), the complete solution was mapped onto the new mesh of 600 equally siz
air zones, and the calculation proceeded. To find the solution on the moving grid, we us
mapping technique after integration of the Lagrangian step. Figure 10 shows spatial pro
of density and pressure at four timeg_§), wheret; is the time at which the second shock
has reached.@ um. Witht; taken as the reference tintg,s aret; + 32 ps,t; + 42 ps, and
t1 + 52 ps, respectively. This problem was previously considered by ktas[21] using
the Hydrocode, KDYNA [23, 24]. Their results and ours are nearly equivalent, except
the density profile near the geometric center after the reflection. The density profile near
center calculated with KDYNA is steeper than the present results i@ H, (0.25),
due to the previously discussed artifacts associated with artificial viscosity.

5. CONCLUSION

Whenever a discontinuity appears in a solution, traditional numerical schemes base
central differencing, combined with artificial viscosity, are tremendously useful numeric
techniques. However, with traditional artificial viscos{t®) formulations, theQ-induced
errors and the smearing of a shock make application of the methods unreliable. We |
demonstrated that the new formulation presented herein provides good results without 0
lations andQ-induced errors. Accurate answers and sharp shock capturing were obtai
for Noh’s shock wave problems (i.e., for plane geometry with uniform and nonunifor
meshes and for spherical geometry), Sod’s shock tube problem, and other shock prob
for real equations of state. The superiority of the new method was confirmed using
Q-induced geometric error which was defined in this paper.

A summary of the advantages of the new algorithm are: (1) The present formulat
of artificial viscosity (Q) is valid not only for a plane geometry but also for cylindrical
and spherical geometries. (2) Since the present formulation is developed on the bas
a physical conservation of momentum correction, the additional amount of moment
introduced byQ is such that the geometric error is near zero. (3) Qibeating error
can be eliminated with the present filteredformulation and the advantages describec
above are analogous for the present formulatio”l of4) A nonlinear numerical filter for
eliminating nonphysical oscillations is simply implemented into @&H correction by
intensifying the local correction terms in the equation up to their maximum values. Tl
allows the use of a small€) coefficient. (5) The smearing of the shock by the new filtere
Q&H formulation is small, so that the shocks are resolved within four mesh interva
which is the maximum shock thickness using the present formulation. Similarly, a cont
discontinuity is resolved within one mesh interval transition. Last, but not least, the n
filtered Q& H formulation has proved to be a robust, accurate, and numerically efficie
means of analyzing a wide range of one-dimensional problems which involve strong she
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