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A new artificial viscosity (Q) model, based on physical conservation corrections
for momentum, and a new artificial heat transfer (H ) formulation are developed for
the analysis of one-dimensional compressible fluid transients in plane, cylindrical,
and spherical geometries. The accuracy of these formulations is verified against
various benchmark shock tube problems. AQ-induced geometric error for cylindrical
and spherical geometry is defined and the benefits of theQ formulation presented are
demonstrated. It is also shown that these formulations can control the total variation
of the solution and have superior shock-capturing capabilities. Comparisons are
made with the originalQ formulations of J. von Neumann and R. D. Richtmyer
(1950,J. Appl. Phys.21, 232), W. F. Noh’sQ& H shock-following method (1987,
J. Comput. Phys.72, 78), and the piecewise-parabolic method of P. Colella and
P. R. Woodward (1984,J. Comput. Phys.54, 174). The comparisons demonstrate the
advantages of the new method. Numerical examples for more realistic equations of
state which show the robustness of the method are also presented.c© 1999 Academic Press
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1. INTRODUCTION

The development of numerical methods for solving systems of nonlinear hyperbolic con-
servation equations that have sharp discontinuities in the solutions is a major objective in
fluid dynamics. Indeed, during the last several decades, numerous methods have been devel-
oped. Perhaps the most popular method is that of von Neumann and Richtmyer [1], which
uses finite difference techniques combined with so-called artificial viscosity. This method is
simple to use and is economical to apply. Unfortunately, the results using this method smear
shocks, and serious errors can be induced by using artificial viscosity for the calculation
of strong shocks. More recently Engquist filters [2] were used to improve computational
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efficiency. This method can be easily implemented into existing codes because the filter step
is essentially independent of the basic differencing scheme. Nevertheless, an increase in run
time is required due to an additional filter step which contains field-by-field decomposition.
In addition to the above mentioned methods, a variety of shock-capturing schemes have
been developed to improve resolution of the shock and the accuracy of the numerical scheme
[3–11]. Many of these methods can be characterized as higher order Godunov methods, or
total variation diminishing (TVD) methods. The oscillations behind a shock are eliminated
by enforcing monotonicity by limiting the range of the solution (Godunov methods) or by
limiting the magnitude of the fluxes in the numerical solution (TVD methods).

In selecting one of the methods for application to a specific class of problems, various
things must be considered, including equations of state, geometry (e.g., cartesian, cylin-
drical, or spherical), boundary conditions (i.e., fixed or moving), desired computing time
and acceptable accuracy, suitability of moving mesh methods, ease of implementation, and
so on. When the physics is complicated, the artificial viscosity method is one of the most
attractive candidates for dealing with shocks. As a consequence, in recent years, improved
artificial viscosity formulations have appeared in the literature. Most of these methods at-
tempt to overcome the disadvantages related to the errors induced by artificial viscosity
(e.g., artificial heating during the reflection of strong shocks, shockless heating, and the
errors which occur when shocks are propagated over a nonuniform mesh and in spherical
geometry). Donat and Marquina [12] addressed the overheating problem near the wall with
Godunov type schemes, and proposed an alternative flux formula to reduce pathological
behavior in the numerical solutions. In the interaction of shock waves, the type of error that
occurs in wall heating was found by Menikoff [13].

Noh [14] demonstrated that artificial heat transfer,H , in addition to artificial viscosity,Q,
is an effective way to eliminate excess heating error during reflection of a shock. In spherical
geometry, Schulz and Whalen’s artificial viscosity tensor formulations of the hydrodynamic
equations with Noh’sH formulation were proven to be fairly accurate [14]. Other forms of
artificial viscosity are based on the TVD limiter idea [15], in which the magnitude of the
artificial viscosity is controlled. In particular, artificial viscosity is turned off when there
is adiabatic compression without shocks and is turned on to reduce oscillations behind
the shock front. Morris and Monaghan [16] used the idea of artificial viscosity with a
time-varying coefficient in their smoothed particle hydrodynamics (SPH) method to reduce
smearing of shocks and vorticity decay. In their work, artificial viscosity evolves according
to a simple source and decay equation. The amount of artificial viscosity increases when
a fluid particle enters a shock and the decay term causes it to decay to a small value
beyond the shock. These formulations of artificial viscosity can give greater accuracy than
von Neumann’s original formulation; however, the improvement in accuracy is restricted
to specific classes of problems and thus these methods are not fully satisfactory.

The objective of this paper is to present and test a new artificial viscosity (Q) and artificial
heat transfer (H ) formulation which contains properties of a nonlinear filter. These formula-
tions ofQ andH were developed by considering the physical meaning of artificial viscosity
and artificial heat transfer in the finite difference equations over a staggered one-dimensional
mesh. It is interesting to note that for slab symmetry, ourQ formulation reduces to the arti-
ficial viscosity formulation of von Neumann, but it is different for cylindrical and spherical
geometries. In the region of oscillations, they can be diminished by intensifying theQ and
H in a specified manner. Section 2 of this paper presents the basic conservation equations
in Lagrangian form, followed by the corresponding finite difference equations constructed
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on a staggered grid. In Section 3, we present the procedure used for the development of
the H andQ corrections. Section 4 contains numerical results for Noh’s constant velocity
shock problem. The numerical results are compared with exact solutions, including Noh’s
Q& H shock-following method and the piecewise-parabolic method (PPM) of Colella and
Woodward [17]. Shock problems for real equations of state are also considered, to demon-
strate the robustness of the method. The final section contains the salient conclusions of our
work.

2. LAGRANGIAN HYDRODYNAMICS WITH ARTIFICIAL VISCOSITY, Q, AND

ARTIFICIAL HEAT TRANSFER, H

The conservation equations in Lagrangian form are:

Mass conservation

v = 1

ρ
=
(

1

α + 1

)
∂(r α+1)

∂m
, (1)

Momentum conservation

∂u

∂t
= −r α

∂(p+ Q)

∂m
, (2)

Energy conservation

∂ε

∂t
= −(p+ Q)

∂v

∂t
+ ∂H

∂m
. (3)

Finally, the spatial coordinate,r (m, t), satisfies the ordinary differential equation

dr

dt
= u(m, t). (4)

Here the correctionsQ and H are to be specified, andv is the specific volume,ρ is the
density(v−1), u is the velocity,ε is the specific internal energy,p is the pressure,t is time,
andα is either 0, 1, or 2, depending on whether there is planar, cylindrical, or spherical
symmetry, respectively. The equation of state in general form isp= p(ε, v). For the special
case of an ideal gas, the equation of state isp= (γ − 1)ρε, whereγ , the ratio of specific
heats, is assumed to be greater than unity. The independent Lagrangian variables arem and
t . The spatial coordinate,r , is related to the mass coordinate,m, by

m(r ) =
∫ r

r0

ρr α dr =
∫ R

R0

ρ0Rα d R, (5)

whereR is taken as the initial position of the Eulerian coordinate (i.e.,r (R, 0)= R), and
ρ0= ρ(r, 0) is the initial density. See also Fig. 1.

For the difference equations, we essentially follow the staggered mesh difference formu-
lation given by von Neumann and Richtmyer [1]; however, in our formulation an explicit
treatment of theQ andH corrections is added in the energy equation. The scalar quantities
Q andH developed in this paper are physical corrections of momentum and energy so that
there is no special reason for treating them implicitly.
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FIG. 1. Staggered grid for spatial discretization in Lagrangian coordinates.

Let

1mj+1/2 = ρ0
j+1/2

(
Rα+1

j+1 − Rα+1
j

α + 1

)
and 1mj = 1

2
(1mj−1/2+1mj+1/2);

then

un+1
j = un

j −
1t

1mj

(
r n

j

)(
pn

j+1/2+ Qn
j+1/2− pn

j−1/2− Qn
j−1/2

)
, (6)

r n+1
j = r n

j +1tun+1
j , (7)

vn+1
j+1/2 =

1

1mj+1/2

((
r α+1

j+1

)n+1− (r α+1
j

)n+1

α + 1

)
, (8)

ε̃n+1
j+1/2 = εn − (pn

j+1/2+ Qn
j+1/2

)(
vn+1

j+1/2− vn
j+1/2

)+ 1t

1mj+1/2

(
Hn

j+1− Hn
j

)
, (9)

pn+1
j+1/2 = p

(
(ε̃)n+1

j+1/2, v
n+1
j+1/2

)
, (10)

εn+1
j+1/2 = εn −

(
pn+1

j+1/2+ pn
j+1/2

)
2

(
vn+1

j+1/2− vn
j+1/2

)+ 1t

1mj+1/2

(
Hn

j+1− Hn
j

)
. (11)

3. Q AND H FORMULATIONS

The basicQ and H formulations were developed as physical conservation corrections
for momentum and energy, respectively. Thus the properties of a nonlinear filter are easily
added in the formulations ofQ andH by simply intensifying the corrections of momentum
and internal energies at a few mesh points where Gibbs oscillations occur.

3.1. TheBasicQ Formulation

Mathematically, the differential form of the equations is obtained from integral equations
representing conservation laws, with the assumption that the physical solution is smooth.
In a region of rapid change, the smoothness assumption is difficult to realize with a finite
difference approximation. A finite difference treatment of pressure shocks withoutQ gives
an unrealistically overestimated node velocity. Artificial viscosity in the problems involving
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FIG. 2. Schematic diagram of the momentum correction procedure.

a strong shock must be used in such a way as to correct the nonphysical velocity induced
by treating the discontinuity with a finite difference approximation. In particular, adding
a certain amount of artificial viscosity in the momentum equation as a way to achieve
solutions as accurate as high resolution (non-Q) schemes implies that the artificial viscosity
formulation can be interpreted as an approximate Riemann solver [15]. An artificial viscosity
formulation can also be interpreted as a nonlinear filter. Indeed, the success of the method
depends on finding an accurate formulation of artificial viscosity which contains these
properties. The momentum equation withoutQ can be expressed as

un+1
j = un

j −
1t

1mj

(
r n

j

)α(
pn

j+1/2− pn
j−1/2

)
. (12)

We have developed an artificial viscosity formulation which has physical meaning based on
Eq. (12). In particular, the compression of the node after one time step can be regarded as
overlapping the two nearest mass-weighted average velocities; see Fig. 2. In other words,
mixing of momentums occurs in the volume node undergoing compression.

In this paper, the amount of momentum transfer due to the mixing of momentums is
given as a momentum correction because the term involves a filtering procedure which is
independent of the difference scheme. The amount of this momentum correction is related
also to the artificial viscosity formulation. The momentum transfer rate by the momentum
mixing in node j + 1/2 is given by

Ṁn
j+1/2 = C2

01ṁn
j+1/2,c

(
un

j − un
j+1

)
, (13)

whereC2
0 is a dimensionless constant and1ṁn

j+1/2,c is the mass mixing rate due to the
volume compression in nodej + 1/2,

1ṁn
j+1/2,c = ρn

j+1/2V̇n
j+1/2,c if V̇n

j+1/2,c > 0, (14)
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andV̇n
j+1/2,c is the volume compression or expansion rate,

V̇n
j+1/2,c =

(
r n

j+1/2

)α(
un

j − un
j+1

)
. (15)

In the case of an expansion,V̇n
j+1/2,c ≤ 0, there is no mixing; thus1ṁn

j+1/2,c= 0. As seen
in Fig. 2, whenC2

0 = 2, the artificial momentum transfer is carried by the whole mass in the
mixing region. After a correction due to the momentum mixing is added in Eq. (13), the final
amounts of momentum contained in the left-hand-side half volume and the right-hand-side
half volume, atj + 1/2 andtn+1, are

Mn+1
j+1/2,l = 0.51mj+1/2u∗n+1

j −1t Ṁn
j+1/2 (16)

and

Mn+1
j+1/2,r = 0.51mj+1/2u∗n+1

j+1 +1t Ṁn
j+1/2, (17)

respectively. Hereu∗n+1
j is the result obtained without a momentum correction. As can be

noted in Eqs. (16) and (17), the total amount of momentum during the integration step is
conserved in the process of the momentum correction. After the same approach is applied
to the other side, the final corrected mass-weighted average velocity is

un+1
j = Mn+1

j−1/2,r + Mn+1
j+1/2,l

1mj
= u∗n+1

j + 1t
(
Ṁn

j−1/2− Ṁn
j+1/2

)
1mj

. (18)

With artificial viscosity added, Eq. (12) can be rewritten as

un+1
j = u∗n+1

j − 1t

1mj

(
r n

j

)α(
Qn

j+1/2− Qn
j−1/2

)
. (19)

Conceptually, Eq. (19) is equivalent to Eq. (18). Thus the artificial viscosity formulation
derived from the process of the momentum conservation correction is given by

Qn
j−1/2− Qn

j+1/2 =
Ṁn

j−1/2− Ṁn
j+1/2(

r n
j

)α . (20)

Summing Eq. (20) from nodej to boundary nodej = N, and assuming that the amounts of
momentum correction(Ṁn

N+1/2) and artificial viscosity(Qn
N+1/2) in the boundary nodes are

zero, we find that the generalQ formulation for plane, cylindrical, and spherical geometries
is

Qn
j−1/2 =

N∑
l= j

(
Ṁn

l−1/2− Ṁn
l+1/2(

r n
l

)α
)
. (21)

One of the main reasons for using artificial viscosity in a numerical method is that one
can properly handle shocks by distributing the momentum near a discontinuity. However,
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the overall amount of momentum must not be changed by using artificial viscosity. In
other words, the artificial viscosity cannot be a momentum source. This is the reason why
the summation in Eq. (21) must be used in theQ formulation for cylindrical and spherical
geometries. In contrast, for plane geometry, the momentum correction terms of other volume
nodes on the right-hand side of Eq. (21) cancel out after summation because(r n

l )
α = 1 at

every velocity node. Thus the artificial viscosity is simply related to the amount of the
momentum correction in each volume node,

Qn
j−1/2 = Ṁn

j−1/2 = C2
0ρ

n
j−1/2

(
un

j−1− un
j

)2
. (22)

We note that Eq. (21) is identical to theQ formulation given by von Neuman and
Richtmyer [1] for plane geometry, but not for cylindrical and spherical geometries.

3.2. TheFilteredQ and H Formulations

As one can see in Eq. (21), theQ formulation is accomplished by determining the
momentum correction (̇Mn

j+1/2) in each volume node. In the compression nodes,Ṁn
j+1/2

is given by Eq. (13). WheneveṙMn
j+1/2 6= 0, we have

∣∣un+1
j+1 − un+1

j

∣∣ < ∣∣u∗n+1
j+1 − u∗n+1

j

∣∣. (23)

Thus Q contains a total variation diminishing property that adjustsṀn
j+1/2. When an

overshoot of pressure is introduced into the node, Eq. (13) is replaced by

Ṁn
j+1/2 = C1

1mj+1/2

1t

(
un

j − un
j+1

)
, (24)

whereC1 is a dimensionless constant that intensifies the momentum correction. The two
velocitiesun+1

j andun+1
j+1 cannot be overcompensated so that a new extremum is created.

The maximum value allowed forC1 is 0.25, which makesMn+1
j+1/2,l = Mn+1

j+1/2,r after the
momentum correction using Eqs. (16) and (17).

For the development of the artificial heat transfer formulation (H ), we have used the
same approach as that used for theQ formulation. TheH formulation is only used in a
region of compression (ρ(r, t)/ρ0 > 1), whereH is the amount of the energy transfer due
to the mixing of internal energy at velocity nodej , induced by compressions in adjacent
volume nodes. Thus, the filteredH is analogous to the filteredQ:

Hn
j = C1

(
1mj−1/2+1mj+1/2

21t

)(
εn

j−1/2− εn
j+1/2

)
. (25)

A method for detecting undesirable maximums and their corrections for systems of
equations was described by Engquist [2]. Using Eqs. (24) and (25), we present a filtering
procedure for our system of equations in a pseudo-language algorithm, which corresponds to
the implementation of the nonlinear filtering, artificial viscosity, and heat transfer corrections
discussed above.
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3.3. The Filtering Algorithm

Assume thatn time steps have been computed. To calculate the needed filtering, artificial
viscosity, and heat transfer corrections for the calculation of advanced time level results,
we perform the following calculations, where1+ and1− are the forward and backward
differences, respectively,1±uj =±(u j±1− uj ):

Do j = 0, N − 1
jfilter,Q= 0, jfilter,H = 0.
If , j = 0, then,1−u j =−1+u j ,1−ρ j+1/2 = 0,1−ε j+1/2 = 0
If , j = N − 1, then,1+u j+1 = 0,1+ρ j+1/2 = 0,1+ε j+1/2 = 0
If , [(1+u j )(1−u j ) < 0, and, (1+u j−1)(1−u j+1) < 0], or,
[(1+ρ j+1/2)(1−ρ j+1/2) < 0, and, not admissible( j, ρn, ρn−1)], then,
jfilter,Q= 1
Endif
If , (1−ε j+1/2)(1−ρ j+1/2) < 0, or,
[(1+ε j+1/2+1−ε j+1/2)1−ε j+1/2 < 0, and, not admissible( j, εn, εn−1), then,
jfilter,H = 1
Endif

Enddo
Do j = 0, N − 1

If , jfilter,Q= 0, then,
Ṁ j+1/2=C2

01ṁj+1/2,c(u j − u j+1) [if a Lagragian formulation]

Ṁ j+1/2=C2
0

(
1Rmax
1r j+1/2

)2
1ṁj+1/2,c(u j − u j+1) [if an Eulerian formulation]

Else
Ṁ j+1/2 = C1

1mj+1/2

1t (u j − u j+1)

Endif
Enddo

QN+1/2 = 0, Ṁ N+1/2 = 0.
Do j = N, 1,−1

Qj−1/2 = Qj+1/2+ (Ṁ j−1/2− Ṁ j+1/2)/(r j )
α

Enddo
H0 = 0, HN = 0.

Do j = 1, N − 1
Hj = 0
If , ρn

j−1/2

/
ρ0

j−1/2 > 1, and,
(
ρn

j+1/2

/
ρ0

j+1/2

)
> 1, then,

If , jfilter,H = 1, or, [ j − 1filter,H = 1, and, j + 1filter,H = 1], then,
Hj = C1

(1mj−1/2+1mj+1/2

21t

)
(ε j−1/2− ε j+1/2)

Else
If , j + 1filter,H = 1, then,
Hj = C1

(1mj+1/2

21t

)
(ε j−1/2− ε j+1/2)

Elseif, j − 1filter,H = 1, then,
Hj = C1

(1mj−1/2

21t

)
(ε j−1/2− ε j+1/2)

Endif
Endif
Endif

Enddo
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Function admissible( j, ρn, ρn−1)
If , min

(
ρn−1

j−1/2, ρ
n−1
j+1/2, ρ

n−1
j+3/2

)
< ρn

j+1/2 < max
(
ρn−1

j−1/2, ρ
n−1
j+1/2, ρ

n−1
j+3/2

)
, then,

true
Else
false
Endif

Return

4. NUMERICAL TESTS

In order to assess the performance of the artificial viscosity and artificial energy transfer
formulations discussed above, we chose problems involving shock waves, contact dis-
continuities, and the reflection of strong shocks at a wall, or at the geometric center of
spherical geometries, to allow verification against known analytical solutions of the equa-
tions being modeled. The EulerianQ formulations are the same as the LagrangianQ
formulations, Eq. (21), except for the dimensionless constant. We note that the dimension-
less constants for Lagrangian and Eulerian formulations,C2

0 andC2
0,E, are related by the

Jacobian, J = ∂r
∂R,C

2
0,E =C2

0(
∂R
∂r )

2. Therefore the amount of momentum correction for an
Eulerian formulation of artificial viscosity is

Ṁn
j+1/2 = C2

0

(
1Rmax

1r n
j+1/2

)2

1ṁn
j+1/2,c

(
un

j − un
j+1

)
. (26)

The meaningful range of the dimensionless constants for theQ andH formulations found
in Section 3 are 0.0≤C2

0 ≤ 2.0 and 0.0≤C1≤ 0.25. TheC1 value used for all our numerical
tests was 0.25. We found that the dependency of the numerical solutions on the magnitude
of C1 was negligible. The magnitude of this constant affects the speed of correction for
the nonphysically determined variables but does not affect the final solutions significantly.
As can be seen in Fig. 3, the numerical results are also not strongly dependent on the
magnitude ofC2

0. The stability limit must satisfy a Courant condition [18], as for otherQ
explicit methods. In order to effectively eliminate the oscillations using a filterQ correction,
we need one more condition for every node:

C2
0(|1u j−1/2| + |Cs, j−1/2|)ρ j−1/2 ≤ C1

1mj−1/2

1t
. (27)

Numerical calculations were carried out in this study using the following time step to
assure these conditions:

1t = min

(
0.5C11r j−1/2

|1u j−1/2| + |Cs, j−1/2|
)
. (28)

For simplicity, we have used some specific notation to identify each method. In particular,

B-Q& HL or E
(
C2

0

)
denotes our LagrangianQ& H or our EulerianQ& H formulation, respectively, each of
which contains filtering properties. Similarly,

N-Q& HL or E
(
C2

0,C1, h
2
0, h1

)
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FIG. 3. The dependence of solutions on the parameter,C2
0.

denotes Noh’s LagrangianQ& H or Noh’s EulerianQ& H formulation [14], respectively.
Similarly, Qo(C2

0) and B-Q(C2
0) denote the originalQ method of von Neumann and

Richtmyer and our LagrangianQ formulation which does not contain filtering properties,
respectively, whereC2

0,C1, h2
0, andh1 are the dimensionless coefficients used to obtain the

numerical results with each method.

4.1. Noh’s Shock Wave Problems

In our first series of tests we study Noh’s three shock wave problems [14], which differ
only in their spatial symmetries. These are well known, very severe tests forQ methods
with which to check forQ-induced errors. The initial conditions areρ(r, 0)= 1, p(r, 0)= 0,
ε(r, 0)= 0, andu(r, 0)=−1, except at the origin, where it must be zero. The equation of
state used was that for an ideal gas withγ = 5/3. For this case, shock waves generated at the
origin propagate with a constant velocity of 1/3, and the internal energy behind the shock
is 0.5 and the densities are 4, 16, and 64 for plane, cylindrical, and spherical geometries,
respectively.

4.1.1. Uniform mesh in plane geometry.The results for plane symmetry used to study
the sensitivity of our numerical method to the constant ofC2

0 are shown in Fig. 3, where
density is plotted versus the distance. The results are all shown for 40 cells(1R= 0.1)
at t = 2.6. The effectiveness of the filterQ developed in this paper as a tool with which
to suppress numerical oscillation is apparent. We see that the wall heating error [14] is
effectively eliminated using the filtered artifical heat transfer formulation. The numerical
results with zero wall heating error are obtained usingB-Q& HL(1.5). The wall heating
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error was about 1.7% forC2
0 = 1. The use of artificial heat transfer to eliminate the wall

heating error is well known [14]. The main disadvantage of previous artificial heat transfer
formulations was considerable smearing of the shock front when a given amount of artificial
viscosity was used. The smearing of the shock with the current artificial heat transfer
formulation is small, about a half mesh interval, and the shock discontinuity is well resolved
within four mesh intervals.

4.1.2. Nonuniform mesh in plane geometry.As noted by Noh [14], classical formula-
tions ofQ produce additionalQ error when shocks are propagated over a nonuniform mesh.
To test the current formulations on a nonuniform mesh, we used the same nonuniform mesh
as that used by Noh for studying this type of error,

1Rj+1 = χ1Rj , (29)

whereχ is 1.05. Ifχ is replaced byχ−1 in Eq. (29), the mesh decreases for the first half
region and then increases for the second half. This type of error was discussed theoretically
by Noh [14]. In fact, he verified that this type of error is unavoidable using a Lagrangian
formulation of artificial viscosity because this error is already inherent in the solution of
the differential equations. However, this error is related to the transient nature of the shock
thickness; thus an Eulerian formulation of artificial viscosity is preferred because constant
shock thickness (i.e., fixed length) can be specified.

The condition1Rmax≥ 1rmaxmust be satisfied in Eq. (26). For the purpose of simulation,
we may take1Rmax=1r 0

max, which suffices for this problem. Figure 4 compares the result

FIG. 4. The present Eulerian formulationB-Q& HE(0.25) is compared with Noh’s EulerianN-Q& HE(1.0,
0.3, 0.0, 1.0) formulation.
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of the B-Q& HE(0.25) with the Noh’sQ& HE(1.0, 0.3, 0.0, 1.0). Since a very largeQE

constant in Noh’sQ& H formulations is necessary to eliminate the nonuniform error, the
results obtained with these constants show spreading of the shock over a large number of
the smaller zones. In a comparison of Figs. 3 and 4, a nonuniform mesh error does not
appear in theB-Q& HE(0.25) results. Note that the shock thickness is equivalent to the one
obtained with a uniform mesh and the Lagrangian formulation of artificial viscosity with
C2

0 = 1.5. The shock is resolved in four mesh intervals in both cases by the use of a much
smaller constant,C2

0, for B-Q& HE. It is clear that the current formulations of filterQ& H
permit the use of smallerC2

0 for resolving the shock for both a uniform and a nonuniform
mesh in plane symmetry.

4.1.3. Spherical geometry.The case of spherical geometry is well known to be a severe
test, and a number of numerical methods fail to give correct solutions. Indeed, serious error
appears in the solutions with the originalQ method (i.e., up to 1000% error near the origin
because of “wall heating”). This type of error was discussed by Noh [14]; he showed that it
depends on theQ formulation. Thus this test problem is a crucial benchmark for our new
Q formulation.

In Section 3, the unifiedQ formulation for plane, cylindrical, and spherical geometries
was developed in such a way as to conserve the overall momentum and yield a new for-
mulation for cylindrical and spherical geometries. Figure 5a shows the density profiles at
t = 0.6 s for 100 cells, where the new formulationB-Q(2.0) is compared with the origi-
nal Qo(2.0), Noh’s standardN-Q& HL(2.0, 0.0, 0.0, 0.0), and the exact solution,ρ= 64,
behind the shock. It can be seen that the error for theB-Q(2.0) is 7% near the shock,
while the errors forN-Q& HL(2.0, 0.0, 0.0, 0.0) and Qo(2.0) are 19% and 40% near the
shock, respectively. As shown in the earlier test of plane symmetry, a wall heating error is
inevitable in difference solutions, since it already occurs in the exact solution of the differ-
ential equation withQ [14]. The same conclusion holds for any shock-smearing method
[17]. However, the wall heating error can be eliminated using artificial heat transfer,H .
The same conclusion holds for spherical geometry; however, the wall heating error shown
in Fig. 5a is dependent on theQ formulation also. Figure 5b shows the velocity profiles
of these results. It can be seen that there is an increased amount of momentum at the grids
(maximum near the shock) withN-Q& HL(2.0, 0.0, 0.0, 0.0) and von NeumannQo(2.0).
As noted in Section 3, in a numerical method artificial viscosity is used to properly handle
the shock by distributing the momentum near the discontinuity where the total amount of
momentum must be conserved. The necessary condition for doing this with aQ correction is

N∑
j=−N

r αj
(
Qn

j−1/2− Qn
j+1/2

) = 0.0, (30)

where j =−N, j = 0, and j = N are the left-hand-side boundary node, the geometric ori-
gin, and the right-hand-side boundary node, respectively, andṀn

− j−1/2= Ṁn
j+1/2 because

of spherical symmetry. At the boundary nodes,Qn
±N±1/2 andṀn

±N±1/2 are zero. This con-
dition is satisfied for the new definition ofQ in Eq. (21), which is expressed in terms of the
momentum correction. For plane symmetry, this condition is automatically satisifed. How-
ever, noQ formulation not using a summation can satisfy the condition given by Eq. (30)
for cylindrical and spherical geometries. Thus the total amount of momentum creation rate
with Q, which is called the geometric error, is greater than zero. This is shown in Fig. 5d,
where the geometric error for ourB-Q(2.0) is compared with the errors for Noh’s standard
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FIG. 5. The solutions for Noh’s spherical shock problem with 100 cells (1R= 0.01 m) and with 400 cells
(1R= 0.025 m), profiles for density and velocity in (a, c) and (b), respectively. The transient geometric error is
shown in (d). Here we compare the presentB-Q(2.0) with Noh’s N-Q& HL (2.0, 0.0, 0.0, 0.0) and the original
Qo(2.0) of von Neumann. The geometric error is defined by the amount of momentum created byQ formulation,
which is given by ErrorG(tn)=

∑N

j=−N
(r n

j )
α(Qn

j−1/2 − Qn
j+1/2).

N-Q& HL(2.0, 0.0, 0.0, 0.0) and the originalQo(2.0). Using B-Q(2.0), zero geometric
error is shown. In contrast, the geometric errors for bothN-Q& HL(2.0, 0.0, 0.0, 0.0) and
Qo(2.0) grow with time. Thus the pre-shock density and velocity profiles are spread over
greater and greater distances (see Figs. 5a and 5b) with increased geometric error.

We confirm this in Figs. 5c and 5d, where we show that improved results forN-Q& HL(2.0,
0.0, 0.0, 0.0) and Qo(2.0) can be obtained by reducing the geometric error using a fine
mesh interval (N= 400,1R= 0.0025). Figure 5c shows the convergence of solutions for
the N-Q& HL(2.0, 0.0, 0.0, 0.0) and Qo(2.0), and Fig. 5d shows that the geometric er-
rors are reduced using a fine mesh interval. UsingN= 400, the numerical results with
N-Q& HL(2.0, 0.0, 0.0, 0.0) andQo(2.0) are nearly equivalent due to the small difference
in geometric error, as shown in Fig. 5d. It is clear that this error can also be reduced by
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FIG. 6. Comparison of the results obtained with the presentB-Q& HE(0.1), Noh’sN-Q& HL (0.667, 0.4, 4.0,
1.0), and the (non-Q) PPM, with 100 cells for the final timet = 0.6 s.

using a smallerQ. However, the amount of error is still troublesome and this error cannot
be eliminated using this kind ofQ formulation. It is one of the main reasons why a nu-
merical method withQ usually fails to obtain the correct result in cylindrical and spherical
geometries. Using the formulation presented herein, the dependence of the geometric error
on mesh size andQ is zero. We stress the importance of conservation of total momentum
using the new formulation ofQ for both cylindrical and spherical geometries.

As noted previously, the wall heating error near the origin can be eliminated using artificial
heat transfer,H . This is shown in Fig. 6, where the result withB-Q& HE(0.1) is compared
with Noh’s N-Q& HL(0.667, 0.4, 4.0, 1.0) and the (non-Q) PPM technique of Colella and
Woodward [17]. Superior results are obtained by the method proposed herein, and the
wall heating error and the oscillation are eliminated. The same quality of solution can be
obtained withB-Q& HL(0.25). These are all shown with 100 cells att = 0.6 s. In Fig. 7,
B-Q& HE(0.1) with uniform 200 cells produces essentially the converged exact solution.

4.2. Sod’s Shock Tube

Another good test problem is due to Sod [19], and consists of two different material states
separated by a diaphragm. That is:

(pL , ρL , uL) = (1.0, 1.0, 0.0), if r < 0

and

(pR, ρR, uR) = (0.1, 0.125, 0.0), if r > 0.
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FIG. 7. The solutions for Noh’s spherical shock problem with 200 cells (1R= 0.0025 m) andB-Q& HE(0.1)
at the final timet = 0.6 s. Profiles for density, velocity, pressure, and internal energy are shown in (a), (b), (c), and
(d), respectively.

The diaphragm is caused to rupture at timet = 0. After the diaphragm bursts, a shock
wave moves toward the right and a rarefaction wave moves toward the left. Figure 8 shows
the results att = 0.2 s with 200 cells andB-Q& HL(1.5) for a specific heat ratioγ = 1.4. The
magnitudes of the various plateaus are reproduced very well without numerical oscillations.
Moreover, the numerical results show that the currentQ& H formulation gives the correct
positions of shock waves and contact discontinuities. In fact, the sharp contact discontinuities
are resolved within one mesh interval and the shocks within three mesh intervals, which
compare very well with numerical results obtained using high resolution schemes [6] and
modern upwind methods [11].
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FIG. 8. The solutions for Sod’s shock tube problem with 200 cells (1x= 0.005 m) andB-Q& HL (1.5) at
t = 0.2 s.

4.3. A Shock Reflection Problem Using Real Equations of State

In this test, we considered the shock reflection problem again using a so-called general
equation of state in plane symmetry. This general equation of state [20] can be written in
the form

p = [1/(E + φ0)]{ζ(a1+ a2|ζ |)+ E[b0+ ζ(b1+ b2ζ )+ E(c0+ c1ζ )]}, (31)

whereE= ρ0ε, ζ = ρ/ρ0−1, and the constants,ρ0,a1,a2, b0, b1, b2, c0, c1, φ0 are given by

ρ0 = 8.90,a1 = 4.9578,a2 = 3.6884, b0 = 7.4727, b1 = 11.519,

b2 = 5.5251, c0 = 0.39493, c1 = 0.52883 andφ0 = 3.6000,
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The initial data for the density and velocity are 8.9 and−1, respectively. The inter-
nal energy at the initial time is chosen to have an infinite pressure ratio. This problem
was solved up to the time when the shock moved a distance of 0.3 m with 100 cells
(1R= 0.01 m) andB-Q& HL(1.5). An exact and a numerical solution of this problem
were obtained by Glaister, using an approximate linearized Riemann solver [20]. The nu-
merical solution using our method is compared with the exact solution in Fig. 9. A good
representation of the exact solution withoutQ-induced error and with the correct shock
speed are shown.

4.4. A Shock Wave Problem for an Imploding Air Bubble

The problem we consider in this test case is concerned with the dynamics of an air bubble
with initial radiusa0= 10µm surrounded by a spherical flask containing water, whose outer

FIG. 9. The solutions for a shock reflection problem with a general equation of state; the pressure ratio
p+/p− =∞ and 100 cells (1x= 0.01 m) for plane symmetry.
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radius isRF = 5 cm. The air and water are initially at atmospheric pressure,p0= 1 bar;
they are in thermal equilibrium, and at rest. These parameters are typical of those found in
sonoluminescence experiments.

The outer radius of the water flask is driven by an oscillatory pressure:pl (RF , t)= p0−
1p sin(2π f t). Here we used1p= 0.25 bar andf = 45 kHz. The expansion of the bubble
radius from its initial radius occurs on a hydrodynamic time scale during the acoustic
delayed rarefaction half-cycle of the wall pressure change. This expansion brings the bubble
to its maximum radius. The ensuing implosion (i.e., rapid compression) of the bubble may
accelerate the air/water interface to supersonic velocities and strongly compress the gas in
the bubble’s interior. Moreover, it generates a strong spherically convergent shock wave.
This inwardly propagating shock wave in the gas collapses to the center and rebounds.

The equation of state for air can be given by an analytic model [21] that includes vibra-
tional excitation, dissociation, ionization, and repulsive intermolecular potentials,

p = R′Tρ(1+mD)(1+m)+ Ecρ
0

1− (3/n)

[(
ρ

ρ0

)(n/3)+1

−
(
ρ

ρ0

)2]
, (32)

ε =
[

5

2
R′T + R′2

e2/T−1

]
(1−mD)+mD R′TD + 3

2
R′T(2mD)(1+m)

+ 2mD R′
∑

i

mi Ti + Ec

(n/3)− 1

[(
ρ

ρ0

)n/3

− n

3

(
ρ

ρ0

)]

+ Ec

(n/3)− 1

[(
ρ

ρ0

)n/3

− n

3

(
ρ

ρ0

)]
+ Ec, (33)

wheremk= 0.5[tanh[7(T − 0.9TK )]+ tanh[0.63]],m=∑5
i=1 mi , R′ = R/28.8 is the gas

constant for air, and,mD (0≤mD ≤ 1; TD = 9.7 eV),mi (0≤mi ≤ 1; T1–5= 14.5, 29.6,
47.4, 77.5, and 97.5 eV),n (=9), ρ0 (=1.113 g/cc), Ec (=2.52× 109 ergs/g), and,2(=
3340 K), are the dissociation of molecular nitrogen, the ionization, intermolecular poten-
tials, the maximum density of the air, the binding energy of fully compressed air, and the
vibrational contributions in the energy equation, respectively.

A polynomial equation of state for water [22] is given by

p = (1+ ζ )
(

G1+ G2E + G3E2+ G4E3

G5+ G6E + G7E2

)
and Gi =

3∑
j=0

Ai j ζ
3, (34)

wherepandE are expressed in terapascals,ζ = ρ/ρ0− 1, E= ερ0, and,ρ0= 0.998 Mg/m3

(density at 298.5 K and standard pressure). The coefficientsAi j for these analytic expressions
are presented in Table I. The range of applicability of Eq. (34) is 0.025≤ T ≤ 10 eV and
0.998≤ ρ ≤ 40 Mg/m3, andp≥ 10−2 MPa. In the numerical solution of present problem,
the spatial scale to be resolved in the water will become progressively smaller as bubble
collapse proceeds because the position of the interface decreases with time. If a fixed grid
is adopted, an excessively large number of grid points are required. To avoid the problem,
we introduced a moving grid during the bubble collapse period according to

z=
(

r

a(t)

)
. (35)
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TABLE I

Numerical Values of ConstantsAij

i Ai 0 Ai 1 Ai 2 Ai 3

1 0 2.190E−3 1.544E−1 2.160E−1
2 −1.340E−2 2.809E+1 1.990E+2 −1.114E+1
3 1.493E+3 3.016E+4 7.418E+3 3.184E+3
4 9.166E+4 7.468E+5 7.742E+4 4.722E+3
5 1.000E+0 6.723E+1 −6.347E+1 3.331E+1
6 1.625E+3 3.274E+4 −2.189E+3 −1.842E+3
7 1.931E+5 1.545E+6 8.734E+4 6.006E+3

FIG. 10. The solutions for an imploding bubble with general equations of state for air and water; 600 cells
inside the bubble and 2000 nonuniform mesh points in the water, with a moving grid.
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For the bubble growth period, in terms of the original state variable,r , the sizes of the
water zones are fixed. The bubble growth period had four equally sized air zones and 2000
water zones that increased geometrically in size from 0.3µm ata0, to 154µm at RF . Four
air zones are enough for an accurate numerical evaluation because the interface velocity is
much less than the sound speed in the gas during this period. At the end of the growth period
(a(t)=amax), the complete solution was mapped onto the new mesh of 600 equally sized
air zones, and the calculation proceeded. To find the solution on the moving grid, we used a
mapping technique after integration of the Lagrangian step. Figure 10 shows spatial profiles
of density and pressure at four times (t1–4), wheret1 is the time at which the second shock
has reached 0.4µm. With t1 taken as the reference time,t2–3 aret1+ 32 ps,t1+ 42 ps, and
t1+ 52 ps, respectively. This problem was previously considered by Mosset al. [21] using
the Hydrocode, KDYNA [23, 24]. Their results and ours are nearly equivalent, except for
the density profile near the geometric center after the reflection. The density profile near the
center calculated with KDYNA is steeper than the present results usingB-Q& HL(0.25),
due to the previously discussed artifacts associated with artificial viscosity.

5. CONCLUSION

Whenever a discontinuity appears in a solution, traditional numerical schemes based on
central differencing, combined with artificial viscosity, are tremendously useful numerical
techniques. However, with traditional artificial viscosity(Q) formulations, theQ-induced
errors and the smearing of a shock make application of the methods unreliable. We have
demonstrated that the new formulation presented herein provides good results without oscil-
lations andQ-induced errors. Accurate answers and sharp shock capturing were obtained
for Noh’s shock wave problems (i.e., for plane geometry with uniform and nonuniform
meshes and for spherical geometry), Sod’s shock tube problem, and other shock problems
for real equations of state. The superiority of the new method was confirmed using the
Q-induced geometric error which was defined in this paper.

A summary of the advantages of the new algorithm are: (1) The present formulation
of artificial viscosity(Q) is valid not only for a plane geometry but also for cylindrical
and spherical geometries. (2) Since the present formulation is developed on the basis of
a physical conservation of momentum correction, the additional amount of momentum
introduced byQ is such that the geometric error is near zero. (3) TheQ-heating error
can be eliminated with the present filteredH formulation and the advantages described
above are analogous for the present formulation ofH . (4) A nonlinear numerical filter for
eliminating nonphysical oscillations is simply implemented into theQ& H correction by
intensifying the local correction terms in the equation up to their maximum values. This
allows the use of a smallerQ coefficient. (5) The smearing of the shock by the new filtered
Q& H formulation is small, so that the shocks are resolved within four mesh intervals,
which is the maximum shock thickness using the present formulation. Similarly, a contact
discontinuity is resolved within one mesh interval transition. Last, but not least, the new
filtered Q& H formulation has proved to be a robust, accurate, and numerically efficient
means of analyzing a wide range of one-dimensional problems which involve strong shock.
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